
JScheduling: A Graphical Interface for Applying

a Process Scheduling Algorithm

Adriana Hernández-Beristain1, Erika Annabel Martínez-Mirón1,

Mariano Larios-Gómez1, Javier Caldera-Miguel2, Luis Angel Zamarripa-Almazan1

1 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico

2 Universidad Politécnica de Puebla, Puebla, Mexico

adriana_beristain@hotmail.com, mlarios777@gmail.com,

erika.a.mtzm@gmail.com, javiercmiguel@hotmail.com

Abstract. Among the tasks that scheduling algorithms perform are the provision

of time to each node and processes management, either in a task queue or in a

list. It is possible, via a command line terminal, to track the performance of these

algorithms. Nevertheless, a visual environment that facilitates this tracking

would be very helpful. This work describes the design and implementation of a

didactic graphical interface for a distributed embedded software, which allows

the visual representation of a process scheduling algorithm in a virtual mobile

distributed system.

Keywords. Distributed system, mobile device, embedded software.

1 Introduction

This work describes the implementation of a graphical interface, named JScheduling,

for an embedded software; this software shows the use of a process scheduling algo-

rithm that allows to a supercomputer the allocation of its resources optimally among

the different nodes connected to it.

A well-known process scheduling algorithm is Simple Linux Utility for Resource

Management (SLURM) [1], which is open code and is implemented in many super-

computers based in Linux. This scheduler gives the nodes a time to execute their tasks,

manages the processes launched by each node and considers a queue of pending tasks

for accessing resources. Besides, SLURM optimizes the nodes’ allocation with an al-

gorithm centered in the Hilbert curve [2].

Another process scheduling algorithm, which will be named as “fan”, gives the

nodes the same amount of time to execute their tasks and, after reaching a consensus,

decide the access to the resources.

Sometimes, the understanding of these algorithms can represent a difficulty due to

the associated abstraction. So, the implementation of JScheduling to represent a mobile

119

ISSN 1870-4069

Research in Computing Science 145 (2017)pp. 119–125; rec. 2017-10-10; acc. 2017-10-20

mailto:mlarios777@gmail.com

distributed system, where the user can manage the nodes in a simple, easy and trans-

parent way, as well as visualize how each node executes its processes, becomes a very

useful and didactic tool.

The following sections describe the implementation of JScheduling in order to rep-

resent, configure, and communicate the nodes, as well as how the fan process schedul-

ing algorithm is used in order to give access to the resources to each node.

2 Development of JScheduling

During the requirement analysis and specification phase, the functionalities identified

were: a) the node network creation (being the nodes the mobile devices), and b) the

obtaining of the required information to implement a process scheduler under a virtual

environment. The following subsections describe how these functionalities were

achieved.

2.1 Node Representation

In order to represent a virtual mobile device some considerations were taken into ac-

count: 1) a simple design and, 2) to insert as many mobile devices as possible. The first

was achieved by using a simple rectangle to represent a node, straight lines for its con-

nections (see Figure 1) and the use of the right click of the mouse for editing options

(more details in Section 2.2). It is important to mention that on the back-end of the

software, a single adjacency list with four elements (transmitter node, receiver node,

bridge node and router node), was used to store the connections. The latter was accom-

plished combining the computer’s date and time and generating a unique identifier for

each node.

Fig. 1. Representation of two nodes with a single connection.

In addition, for representing the mobile devices and their respective resource re-

quests, Petri networks [3] were used because of their graph design. A graph is defined

as a triplet G = <P, R, A>, where P is the set of processes used by the scheduling algo-

rithm, R is the set of resources used in a distributed environment and A is the set of

120

Adriana Hernández Beristain, Erika Annabel Martínez Miron, Mariano Larios Gómez, et al.

Research in Computing Science 145 (2017) ISSN 1870-4069

edges that relate one to another process [4]. Figure 2 depicts an example where pro-

cesses p1 and p2 request the resources, but it is the process p1 that gets the critical

section.

Fig. 2. Example of Petri nets notation.

2.2 Node Configuration

For the creation and manipulation of each node on the workspace, a contextual control

menu can be used (right click) to display a set of possible actions: a) New SmartPhone;

b) Dragging; c) Connection; d) Individual elimination; e) Overall elimination; f) Inter-

communication - JNI y g) Cancellation. Figure 3 shows the menu highlighting the Java

Native Interface (JNI) function, that allows the native calls for the communication be-

tween the embedded software and the underneath operative system (OS).

Fig. 3. Contextual control menu.

r1
 p1

 p2

121

JScheduling: A Graphical Interface for Applying a Process Scheduling Algorithm

Research in Computing Science 145 (2017)ISSN 1870-4069

2.3 Communication between Nodes

The core functionality of JScheduling is the communication between the virtual mobile

devices through an information flow between two layers, the graphic layer and the low

level layer. For this reason, a multiplatform with JNI and the supercomputer’s OS

(Minix) was implemented.

Minix is a modular operative system in which services are considered as processes,

in comparison to other operative systems, where services are treated as simple calls to

the system [5]. In Minix, any kind of processes can communicate between them through

primitives to exchange information by means of messages.

In JScheduling, the information exchanged between the nodes includes the node’s

identifier, the execution time (start, final) and the quantum assigned by the system to

the process. The code lines shown in Figure 4 correspond to the function that requests

for time in the process planning algorithm and assign the respective ID to the node.

Fig. 4. ID generation for each node in the low level layer.

3 Functioning of JScheduling

For representing the process scheduling, a driver capable of using real resources was

implemented as a DLL file. When the JNI option is selected in the contextual menu,

the driver requests the ID processes of the connected nodes from the supercomputer

working on real time. Then a command line terminal is used to verify that the exchange

of messages between the connected nodes was correct (see Figure 5).

#include <jni.h>

#include <stdio.h>

#include <string.h>

#include <time.h>

JNIEXPORT void JNICALL Java_DelayTime

 (JNIEnv * env, jobject jobj,jstring i){

 int ID;

 time_t rawtime;

 struct tm * timeinfo;

 time (&rawtime);

 timeinfo = localtime (&rawtime);

 const char *str = (*env)->GetStringUTFChars(env, i,

0);

 printf("Dispositivo: %d Grupo: A Proceso: %s Date:

%s \n",

 ID++, str,asctime (timeinfo));

}

122

Adriana Hernández Beristain, Erika Annabel Martínez Miron, Mariano Larios Gómez, et al.

Research in Computing Science 145 (2017) ISSN 1870-4069

Fig. 5. Exchange of messages between emitter (Dispositivo 2) and receptor (Dispositivo 3) nodes.

3.1 Characteristics of the Evaluation Environment

Because a personal computer did not have enough resources for testing the creation of

more than five mobile devices, there was the need to use a supercomputer, whose char-

acteristics are described next: The Cuetlaxcoapan supercomputer of the LNS is com-

posed of a standard calculation cluster with Intel Xeon processors and a cluster with

Intel Xeon Phi Knights Landing processors with 228 Thin calculation nodes (5472 total

cores). Each node contains 2 Intel Xeon E5-2680 v3 processors (Haswell) at 2.5 GHz,

12 cores per processor / 24 total cores, 128 GB of DDR4 memory at 2133 MHz, 2

Gigabit Ethernet network interfaces and an InfiniBand FDR 56 Gbps network interface.

Storage of 1.2 PB of total space for disk storage. Finally, there is a Gigabit Ethernet

network for managing the hardware of the supercomputer and the provisioning of soft-

ware to the nodes.

4 Results

The implementation of an interface that allows to represent any mobile distributed sys-

tem was achieved. The mobile devices are introduced as single rectangles, the straight

lines denote the connection between them, and the information inside each node corre-

spond to the resources requested to the system. The interface is centered in graphs,

edges and relations between the mobile devices.

Besides the graphical representation of the mobile distributed network, it is possible

to visualize the functioning of a process planning algorithm (fan) by means of the in-

formation displayed in each mobile device representation. Figure 6 shows how the

graphical interface and the process planning algorithm are working together.

123

JScheduling: A Graphical Interface for Applying a Process Scheduling Algorithm

Research in Computing Science 145 (2017)ISSN 1870-4069

Fig. 6. The graphical interface and the process scheduling algorithm.

5 Conclusions and Future Work

The implemented graphical interface allows the visual representation of a mobile dis-

tributed system in a simple, easy and transparent way. At the same time, it is possible

to visualize how a fan process scheduling algorithm is executed through the exchange

of information between the nodes by means of labels inserted in each node.

So far, just one process can be executed by each node, but it is planned to modify

the functions to allow the generation of more processes. Also, the use of other process

scheduling algorithms is considered.

Acknowledgments. The authors thankfully acknowledge the computer resources, tech-

nical expertise and support provided by the Laboratorio Nacional de Supercómputo del

Sureste de México, CONACYT national laboratories network.

References

1. Trinitis, C., Weidendorfer, J.: Co-Scheduling of HPC Applications. 71–73 (2017)

124

Adriana Hernández Beristain, Erika Annabel Martínez Miron, Mariano Larios Gómez, et al.

Research in Computing Science 145 (2017) ISSN 1870-4069

https://books.google.com.mx/books?id=fgP0DQAAQBAJ&pg=PA68&dq=SLURM+linux+pdf&hl=es-419&sa=X&ved=0ahUKEwj--5uUzarXAhUJ6GMKHSZaDWMQ6AEINDAC

2. Costa, L., Oliveir. P.: An elistist genetic algorithm for multiobjective optimization. 309–
310 (2003)

3. Tanenbaum, A. S., Wetherall, D.J.: Computer networks. 232–237 (214)

4. Lee, J. S.: A Petri net design of command filters for semiautonomous mobile sensor net-

works. IEEE Transactions on Industrial Electronics, 55(4), 1835–1841 (2008)

5. Herder, J. N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A. S.: MINIX 3: A highly relia-

ble, self-repairing operating system. ACM SIGOPS Operating Systems Review, 40(3), 80–
89 (2006)

125

JScheduling: A Graphical Interface for Applying a Process Scheduling Algorithm

Research in Computing Science 145 (2017)ISSN 1870-4069

